Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 1024519990080050593
Journal of the Environmental Sciences
1999 Volume.8 No. 5 p.593 ~ p.600
Change of Heavy Metals and Sediment Facies in Surface Sediments of the Shihwa Lake
Choi Man-Sik

Chun Jong-Hwa
Woo Han-Jun
Yi Hi-Il
Abstract
In order to determine the changes of sediment facies and metal levels in surface sediments after the construction of Shiwha Lake, surface sediments were sampled at 8 sites located on the main channel monthly from June, 1995 to August, 1996 and analysed for 12 metals (Al, Fe, Mn, V, Cr, Co, Ni, Cu, Zn, Cd, As and Pb) by ICP/AES and ICP/MS. Two groups of sampling sites(the inner lake with 3 sites and the outer lake with 5 sites) are subdivided by the surface morphology ; the inner lake is a shallow channel area with a gentle slope, while the outer lake is relatively deep and wide channel with a steep slope which has many small distributaries. After the construction of dam, fine terrestrial materials were deposited near the outer lake, which resulted in the change of major sediment facies from sandy silt to mud. With the deposition of fine sediments in the outer lake, anoxic water column induced the formation of sulfide compounds with Cu, Cd, Zn and part of Pb. Metal (Cr, Ni, Cu, Zn and Cd) contents in sediments increased up to twice within 2 years after the construction of dam. This is due to the direct input of industrial and municipal wastes into the lake and the accumulation of metals within the lake. In addition, frequent resuspension of contaminated sediments in a shallow part of the lake may make metal-enriched materials transport near the outer lake with fine terrestrial materials. As the enrichment of Cu, Zn, Cd and part of Pb in the Shiwha Lake may be related to the formation of unstable sulfide compounds by sulfate reduction in anoxic water or sediment column, the effect of mixing with open coastal seawater is discussed.
KEYWORD
Shihwa lake, sediment, metal
FullTexts / Linksout information
Listed journal information
ÇмúÁøÈïÀç´Ü(KCI)